Investigación

Undefined

Benefits of natural fertilizers to vegetable farming

Benefits of natural fertilizers to vegetable farming

  • Dr Santiago Peredo, professor at the Technological Faculty of Universidad de Santiago, has shown that using natural fertilizers like humus and compost are suitable for growing vegetables. His project was awarded funds through the last Scientific and Technological Research Department (Dicyt) contest.

     

    The objective of the study “Estructura comunitaria de la mesofauna edáfica en sistemas de cultivos hortícolas manejados con aplicaciones de compost”, led by Dr Santiago Peredo Parada of the Department of Agricultural Management of Universidad de Santiago, is to show that natural fertilizers are the best alternative for growing vegetables.

    The study has been conducted in a demonstration center in Buin (Metropolitan Region), under the real management conditions of small scale producers in areas where lettuce, cauliflower, spinach, chard, tomato and carrots, for example, are grown.

    According to the National Statistics Institute (INE, in Spanish), the horticultural surface of the country reaches 70 thousand hectares:  14% of them correspond to corn, 10% to lettuce and 7% to tomato. Many of these products are exported to foreign markets, so it is important that they comply with high standards of quality. Besides, they are major components of the country’s diet and small scale producers are their main suppliers.

    Agro ecological research

    One of the main challenges posed by an agro ecological study is the unpredictable behavior of climate at implementing the experimental design.

    Dr Peredo is studying the variation of soil mesofauna in this farming systems to determine the amount and type of organisms present in a cropland, and how they vary (or not) when two organic fertilizers are used: compost and humus. 

    When using these natural fertilizers, soil mesofauna communities are the expected to modify their structures in different ways. Natural fertilizers are important because they activate the biology of the soil, contributing to improve the fertility of the soil and the development of crops.

    The idea is that the soil contributes to the fertility of the plant, avoiding the use of synthetic fertilizers. “Soil life will provide the optimal conditions to get the nutrients required by crops. This process is slow as it is necessary to create a balance in the soil that allows delivering the nutrients available,” he said.

    Benefiting the ecosystem

    Dr Peredo’s study has shown two significant results so far. On the one hand, the organisms that abound in the soil correspond to the same functional groups detected by studies conducted abroad: mites and springtails. On the second hand, changes in community structure are more evident during the crop development and in relation to the type of crop, when comparing with previous projects.

    The researcher highlights the importance of using this type of natural fertilizer, because “we should not only consider farming requirements, but also the needs of the soil organisms.”

    “The variety of functional organisms in the soil contributes to create the edaphic conditions for crop development by stimulating the soil’s biology. This is one of the core elements of agro ecological management. Using natural fertilizers is an efficient way of adding balanced organic matter to the soil. This practice, together with polyculture, is the base of biodiversity management in agro ecological systems,” the researcher said.

    Dr Peredo expects that his research line “will contribute to reassess the criteria for the granting of subsidies in soil reclamation and improvement programs, among others, and also to create new state incentives and aids. For us, it is imperative to conduct applied research under real conditions that allow an agro ecological transition at a parcel level.”

     

    Translated by Marcela Contreras

Researchers study solution to combat bacterium that affects fish

Researchers study solution to combat bacterium that affects fish

  • The death of fish caused by pathogenic agents is a major problem for the national aquaculture industry. For this reason, researchers at the Faculty of Chemistry and Biology are developing a project to generate a new immunization strategy.


 

The death of fish caused by pathogenic agents is a major problem for the national aquaculture industry. For this reason, researchers at the Aquaculture Biotechnology Center of the Faculty of Chemistry and Biology are developing a Fondecyt Initiation Project to generate a new immunization strategy.

According to the Undersecretary of Fishing and Aquaculture, in 2013 the fishing production was 2.9 million tonnes, 1.2 million of which were allocated for exports. Thus, our country stands out for its aquaculture industry, being one of the largest salmon producers worldwide, right after Noruega.

However, one of the major problems faced by this industry is the number of diseases caused by pathogens like Piscirickettsia salmonis, a bacterium that causes tissue damage and loss of appetite in fish, leading to fish death, decreased production, reduced quality of the product and the subsequent social impact.

According to Dr Sebastián Reyes, professor at the Faculty of Chemistry and Biology, “We only need to remember the health emergency caused by ISA virus in salmon farming. It caused social damage, because all communities related to aquaculture ended like ghost towns.”

A project to contribute with salmon farming industry

Through the Fondecyt Project 11150807 “Passive immunization as a new control strategy against Piscirickettsia salmonis,” researchers seek to propose an innovative and effective alternative to combat this bacterium that only affects fishes in Chile. For this purpose, they are working on a passive immunization strategy that involves stimulating the immune system’s cells to prevent the Piscirickettsia salmonis from spreading.

“We suggest stimulating the fish by using a hyperimmune serum. The idea is to give this serum to primary cultures of infected cells from the immune system and see if the serum is able to activate them and degrade the bacteria inside. We also need to describe the infectious cycle of the bacterium studied to measure its impacts as they are unknown for now.”

The project is also supported by the ICTIO Biotechnologies Consortium, created through a CORFO (the Chilean Economic Development Agency) project, which is formed by the following entities: Activaq S.A., Australis Mar S.A., Productos del Mar Ventisqueros, Salmones Blumar and Universidad de Santiago de Chile.

The project seeks to find a concrete and viable solution for the salmon farming industry by directly involving researchers and related companies to contribute to this strategic productive sector of the country.

Translated by Marcela Contreras

Academic studies brain development process in human embryos

Academic studies brain development process in human embryos

Providing basic knowledge about human cerebral cortex development at embryonic and early fetal stage is the goal of the research project led by Dr. Lorena Sulz, which will be conducted during the next three years.

According to reports, some psychiatric disorders, such as schizophrenia and bipolar disorder, begin during embryonic development. Most of the studies on this topic have been conducted on animal samples, due to ethical restraints and limited access to human embryos. This is the reason why the field of human embryology related to neurology is an area which has not been thoroughly explored.

In this context, Dr. Lorena Sulz, academic of Universidad de Santiago’s School of Medicine, will carry out the study “Role of nitric oxide in human cerebral cortex morphogenesis”, which intends to gather critical information about the mechanisms involved in the development of nerve cells during the first weeks of pregnancy.

The study will be conducted during the next three years and is funded by the Scientific and Technological Research Department (Dicyt) of Universidad de Santiago. It is a unique study as it is the first time that this branch of embryology involves human samples, which were obtained from de Institution’s Embryo-Fetology collection.

The idea is to gather basic knowledge about this topic in order to explain if the presence of nitric oxide is also essential for producing new nerve cells in human cortex, as it has already been proved in animal samples and in neuronal regeneration processes, both in human beings and mice. “We want to know if this molecule is expressed in the cerebral cortex being developed and identify in what areas and at what stages it is present. In this way, we can infer approximately the process in which it is involved,” the academic explains.

The study will be carried out in two stages. The first one will completely focus on the morphological analysis of cells and embryos being used. This stage, which is under execution at this moment, will allow describing the human cerebral cortex development process. After identifying each phase, the second stage will allow identifying cells that produce nitric oxide and the process in which it would be involved.

The study will be conducted at the Embryology Unit of the Faculty of Medical Sciences, Universidad de Santiago, led by Dr. Jaime Pereda, the project`s co-investigator, M.S. Carlos Godoy and Dr. Sulz. The three professionals, experts in their areas of research interest, complement each other’s work in a way that has helped to a good execution of their projects. “In general, the three of us work together because we use very similar techniques: only the molecule and the body organ of interest are different. We have adjusted to each other very well,” Dr. Sulz adds.

However, the expectations are long-term. The research seeks to establish some theoretical basis for human cerebral cortex development, in order to develop new studies on this topic. The results will be presented in different papers in specialized publications and in different congresses and conferences.

Finally, Dr. Lorena Sulz expects that during the research, they will be able to prove that nitric oxide takes part in human cerebral cortex development, just like it does in laboratory animals. “As it is basic science, it only provides a knowledge base. But if nitric oxide is known to be significant in cerebral cortex development, further care should be taken so as not to interrupt this process during the critical period, preventing potential malformations. This additional knowledge could be a contribution to prenatal care,” the researcher concludes.

Translated by Marcela Contreras

Academic gives presentation to international experts on the progress of studies related to computer vision

Academic gives presentation to international experts on the progress of studies related to computer vision

  • Dr. Sergio Velastín, professor at the Department of Informatics Engineering of Universidad de Santiago de Chile, gave a talk on the use of data fusion in computer vision at the 17th Conference of the Institute of Electrical and Electronics Engineers (IEEE), held at Salamanca, Spain. Around 400 officials from the Ministries of Defense of different countries and members of the NATO attended the conference.

International experts on data management gathered last week in Salamanca, Spain, at the 17th version of the International Conference on Information Fusion (Fusion 2014) supported by the IEEE. Universidad the Santiago de Chile was represented by Dr. Sergio Velastín, full professor at the Department of Informatics Engineering, who gave a presentation during the activity.

He gave his presentation “The potential of fusion in computer vision application” to more than 400 people, many of them members of the North Atlantic Treaty Organization (NATO) and representatives of Ministries of Defense of different countries, who attended the conference to learn about the progress in this field.

Dr. Velastín talked about computer vision, the branch of artificial intelligence that is concerned with finding artificial means to interpret the visual information of the surrounding world. Human beings have specialized in this interpretation and use a significant part of their brains to do it. “Most of what we do every day (getting around, driving, interacting with others, enjoying sports, teaching our children, learning, reading information, among others) requires interpreting what we see. If machines were able to emulate these abilities, we could potentially enrich our lives and empower mentally or motor- handicapped people. We could also make our public spaces safer,” the academic said.

Data processing in the digital era

According to the researcher, more than 40 years ago, a revolution started in human development that would potentially transform what up to then were physical quantities (images, printed letters, vital signs like blood pressure, sounds, among others) into digital data (numbers) that could be processed by a computer. “This digital era in which we live has surrounded us to such a degree that we almost do not realize how extended the generation, transmission and processing of data are. A routine telephone call occurs thanks to the processing of these numbers. Everything can be more easily filed and humankind is generating more data than ever in its existence,” professor Velastín said.

The academic explained that although many technologies- like data fusion- initially arose due to military needs, especially during the Cold War, “the use of this data involves large potential benefits, but they undoubtedly depend on how societies and governments use it. Europe, with a more egalitarian and socially inclusive model, is achieving great progress benefiting people, for example, through the so-called intelligent cities and environmentally assisted life.”

Professor Velastín thinks that in societies with more individualistic models, like Chile or even the United States, benefits could turn into danger, mainly because these contributions are not well distributed and are not used for social inclusion. “How many municipal schools do usually use tablets or smart boards?” The risk posed by disparity in the access to technology increases inequality, particularly, in future generations,” he said.

Security cameras

At present, Dr. Velastín is conducting a study in London on people’s behavior on public transportation, by recording and interpreting digital images captured by security cameras. In his opinion, the use of cameras in public spaces is a complex issue that depends on the balance between the right to security and the right to privacy. “In an ideal society, nobody is arrested at random unless he/she is a suspect or has put other people’s security at risk. What is important is to have clear regulations that are transparently respected by everyone who is responsible for a security camera, both in the government and in the private sector.

Professor Velastín has worked for several years in the United Kingdom, the country with more cameras per capita in the world, but also with very strong regulations for protecting data. He went to Spain in the context of a visiting professorship at Universidad Carlos III de Madrid, through its Chairs of Excellence program, funded by Banco Santander.

 

Translated by Marcela Contreras

Researchers study nanoparticles to prolong the effect of cancer-fighting drugs

Researchers study nanoparticles to prolong the effect of cancer-fighting drugs

  • In order to develop more tolerable therapies, a research team at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile studies the use of biodegradable nanoparticles to increase the Adenosine Triphosphate (ATP) circulation time in the body to combat cancer.

 

In order to develop more tolerable therapies, a research team at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile studies the use of biodegradable nanoparticles to increase the Adenosine Triphosphate (ATP) circulation time in the body to combat cancer.

The study is led by Dr Patricia Díaz, professor at the Faculty of Chemistry and Biology and is being developed in the context of the 2016 Fondecyt Post Doc Project (3160837) "Uso de nanopartículas con circulación prolongada para la administración de ATP en tratamientos anticancerígenos." Dr Díaz and her team will test new nanotechnology-based applications to deliver cancer-fighting drugs into the body.

She explains that any drug delivered in the body for therapeutic purposes requires a circulation time to play its therapeutic role.

Some molecules, like ATP, are quickly degraded, so high constant drug doses are required to be therapeutically effective and this is not beneficial for patients.

“As drugs are encapsulated in nanoparticles, the enzymes that metabolize them cannot bind to them. This is why they are protected against degradation. Consequently, drugs’ half-life is increased, prolonging its therapeutic efficacy,” she explains. 

Improved treatments

The advantage of using ATP as a cancer-fighting drug is that it has minor side effects if compared to other drugs. But ATP degrades very quickly when it is recognized by the enzymes in the body. Therefore, different drug administration methods are required, like the use of nanoparticles with biodegradable and biocompatible properties.

“For this reason, we want to encapsulate ATP into biocompatible nanoparticles to increase its half-life. We will also use other strategies to make them invisible to the immune system, so that they can circulate longer. The idea is to prevent them from binding to the cell and to avoid extracellular release of ATP. In this way, we expect to have a higher amount of drug available in the body for a prolonged anti-cancer effect,” she explains.

According to Dr Díaz, the main objective of the study is to test the effectiveness of ATP-carrying nanoparticles in cancer treatment. “I expect to demonstrate that nanoparticle-encapsulated drugs increase their bioavailability when compared with conventional administration methods. Besides, we also expect to analyze the potential synergistic effect of administrating ATP in combination with other drugs frequently used in cancer treatment.”

“This synergistic effect could destroy a higher number of cancer cells, benefiting patients with advanced cancer,” she adds.

Another advantage of this type of treatment is that, as it allows a sustained release of drugs in time, patients could receive the treatment once a week or every two or more weeks, depending on the drug encapsulation capacity and its circulation time,” she concludes. 

Dr Juan Pablo García-Huidobro, researcher at the Faculty of Chemistry and Biology, is also participating in the study, which is being conducted at the Pharmacology Laboratory.

 

Translated by Marcela Contreras



 

Universidad de Santiago opens new research building

Universidad de Santiago opens new research building

  • With a space of 2,755 m2, the five-floored building will be home to the Center for the Development of Nanoscience and Nanotechnology, the Aquaculture Biotechnology Center and the Soft Matter Center. The cost of the building construction amounted to about CLP 5,000 million.

 

 

In a context in which Chile only invests 0.39 of its GDP in research, the President of Universidad de Santiago de Chile, Dr Juan Manuel Zolezzi, highlighted the importance of this new space that will contribute to research and development in the country.

“This is one of the state-of-the arts buildings in Chile with regard to university research and it is an incentive for new researchers to continue innovating in key areas for the development of Chile,” he said. He added that Universidad de Santiago de Chile is a leader in technology transfer.

Senator Guido Girardi, who heads the Challenges for the Future. Science, Technology and Innovation Commission of the Upper House, valued the work done by public universities.

“These universities take charge of basic sciences on their own. Particularly, Universidad de Santiago has had the wisdom to connect basic sciences to the problems of the country and to generate innovation to solve these problems,” he said.

A few months ago, Dr Girardi visited the Center for the Development of Nanoscience and Nanotechnology (Cedenna, in Spanish) where he met with professionals in this significant research field. After the opening ceremony he congratulated the university on the new facilities.

The centers

Representatives of the centers that will occupy the new facilities expressed their satisfaction with the architectural configuration of the building that facilitates research development.

Dr Francisco Melo, Head of the Soft Matter Center that gathers together scientists in the fields of Physics, Chemistry, Biology and Engineering, said that the new space will offer endless opportunities for a better science development and for positioning the university at an international level.

For her part, Dr Dora Altbir, Head of the Cedenna, said that the possibility of bringing together scientists from different fields will allow a more active collaboration than the one that the university has now.

Eugenio Spencer Ossa, Head of the Aquaculture Biotechnology Center (CBA, in Spanish) said that the new building will allow to further scientific research and contribute to improve domestic industrial production, like salmon farming.

Architecture

The Rector Eduardo Morales Santos Research Building, with a total surface of 2,755.15 m2, is located in the central campus of the university. Its design is a geometric reinterpretation of the heritage buildings of the institution designed by the architects Héctor Valdés, Fernando Castillo Velasco, Carlos García Huidobro and Carlos Bresciani and built between 1957 and 1967. The building’s name is a tribute to the first democratically-elected university president after the dictatorship.

 

Translated by Marcela Contreras

New compound to prolong shelf life of dairy products

New compound to prolong shelf life of dairy products

  • The project led by Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty, seeks to renew food industry by developing a compound with antimicrobial and antioxidant properties to prolong shelf life of dairy products. The project is funded through a Fondecyt Regular project 2016.

 

 

Nowadays, fresh, healthy and natural food consumption has increased, particularly, the intake of dairy products. According to the Chilean Bureau for Agricultural Studies and Policies (ODEPA; in Spanish), in 2013 the intake per capita was 146.5 liter, a national record in the country. 

However, these products require additives for their preservation that are not always natural and that do not allow a balanced and healthy diet.

In this context, Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty; Dr Rubén Bustos, professor at the Department of Chemical Engineering of the Faculty of Engineering, and students at both units formed an interdisciplinary research team that will work on the study “Prolonged release of natural active compounds for improving shelf life of a dairy food matrix: Effect of structure obtained by different encapsulation process”. The project is funded by a Fondecyt Regular project (1160463) and it seeks to find a new active compound to preserve dairy products by means of nanotechnology. 

“We want to develop a new active ingredient with antimicrobial and antioxidant properties for dairy foods, in such a way that the compound has a prolonged release during storage, extending the product’s shelf life,” Dr Matiacevich says.

With this in mind, the researchers intend to study how the structure generated in this active ingredient- a powder developed through two different techniques- modifies its prolonged release in time in a real matrix,” she adds.

Food innovation and collaborative work

The objective of the study is to evaluate the effect of the structure obtained through “different encapsulation processes in prolonged release during storage of an encapsulated active agent,” in order to prolong the shelf life of a milk-based food matrix.

“By using encapsulation processes it is possible to obtain nanometric-sized particles, so the principles of nanotechnology are involved in this development,” favoring the compound prolonged release,” Dr Rubén Bustos, co-researcher of this study, says.

Food innovation research has increased worldwide. In Latin America, there are several research groups. For example, there are centers in Argentina, Colombia and Brazil, which professionals will collaborate in this project.

According to Dr Matiacevich, the main contribution of this study lies in that they will work directly with foods, so the study will not only provide basic knowledge but it will be applied to a real matrix.

For his part, Dr Bustos stresses the importance of their work with nanotechnology by saying: “At some point, microencapsulated ingredients were the greatest breakthrough, but now we will work with nanoencapsulated compounds, with much smaller and innovative structures.”

For the research team, the most important fact in relation to this project is that it involves the collaborative work of two departments of two different faculties of Universidad de Santiago de Chile. They also value the support of the Vice Presidency of Research, Development and Innovation, and the collaborative work with national and foreign universities. 

 

Translated by Marcela Contreras

Researchers at Universidad de Santiago develop hydrogen-based technology

Researchers at Universidad de Santiago develop hydrogen-based technology

  • Dr Daniel Serafini and Dr Álvaro San Martín, both professors at the Department of Physics, have developed an innovative solution that allows to store energy as hydrogen. One of the advantages of this technology is that it is not intermittent as current non-conventional energy sources (NCES), like solar and wind energy. This project is a contribution of Universidad de Santiago de Chile to the energy industry.

 

An innovative technology to store energy as hydrogen is being developed by Dr Daniel Serafini and Dr Álvaro San Martín, both professors at the Department of Physics of Universidad de Santiago de Chile.

According to Dr Serafini, one of the advantages of this technology is that it is not intermittent as current non-conventional energy sources (NCES), like solar and wind energy.

Hydrogen is generated during off-peak periods via water electrolysis. Then, depending on the needs, electric power is generated using the hydrogen stored in an electrochemical device called fuel cell. This system is very efficient and is environmentally friendly, because hydrogen combustion only generates water vapour, free of greenhouse gases and particulate matter.

Storing energy as hydrogen is a better solution in comparison to lithium batteries. “We compete with lithium batteries and they are much more expensive and heavier and they have technological problems regarding their size, i.e., at equal size, they have a more reduced capacity,” Dr Serafini says.

According to the expert, with current battery technology, lithium reserves in the world “are enough to cover only 40% of the cars in the Unites States.”

It is also worth to mention that this solution is particularly attractive to settlements in remote areas that do not receive power supply from the interconnected grid system.

The researchers implemented a demonstration module at the Minera San Pedro mining camp, in Til Til (at the north of the Metropolitan Region), where the pilot project has been working since mid-2015.

The CLP150 million project has been funded by the Innova Chile program of the Chilean Economic Development Agency (CLP132 million) and Minera San Pedro.

Greater involvement of the private sector

For his part, Dr San Martín stresses that the project has been well received by the Government and that now, a greater involvement of the private sector is required. “In developed countries, different public and private programs to develop hydrogen technologies have been funded with millions of dollars for a long time,” he says.

State-run bodies in Chile have already recognized the importance of hydrogen in the future for a clean non-polluting public transport. Both researchers agree that this is an essential starting point. 

Target market

One of the benefits of implementing this type of technology in Chile is that we have enormous ENCS resources of all kinds (solar, wind, geothermal, hydroelectric and tidal power), but they are intermittent, so the use of hydrogen would be highly convenient. 

The researchers say that this project “is not targeted at large companies for now, but remote places, like small settlements or fishing villages away from interconnected grid systems, little mine sites and road construction zones, etc.”

They expect to fully implement the project by mid-2016. Although they acknowledge that it is necessary to make this technology more price competitive, they say that costs have significantly fallen in recent times due to the huge development of fuel cell vehicles.

 

Translated by Marcela Contreras

Scientist works on mathematical model to prevent wooden structures from collapsing

Scientist works on mathematical model to prevent wooden structures from collapsing

  • Dr Erick Saavedra Flores, researcher at the Department of Civil Works Engineering of Universidad de Santiago de Chile, is studying new mathematical techniques to computer simulate the performance of wood at extreme ranges of deformation, cracking and ductile processes and its possible progressive collapse.

 

Wooden structures in a seismic country like Chile require constant inspection to check on its resistance in case of critical events such as earthquakes.

Dr Erick Saavedra Flores, researcher at the Department of Civil Works Engineering of Universidad de Santiago de Chile, is studying new mathematical techniques to computer simulate the performance of wood at extreme ranges of deformation, cracking and ductile processes and, eventually, in a progressive collapse.

Dr Saavedra explains that failures in wooden structures are divided into two groups: brittle and ductile failures. Both will determine the time before wood collapses. “Usually, structures fail abruptly, without previous notice. This type of failure is classified as ‘brittle’. However, at a local level, close to metal joints or fittings, wood fails in a “ductile” manner, i.e., it fails gradually in time. This latter type of failure is very common in very high buildings made of wood,” he says.

With the resources provided by a Fondecyt Regular project, Dr Saavedra will present a new model based on a mathematical technique called “homogenization”, which seeks to detect cracking and irreversible deformation processes at different spatial scales.

Worldwide efforts

“Achieving this goal will be a big challenge, because we require to extend the existing theory to incorporate the damage factor, i.e., degradation, loss of material stiffness and cracks into the multi-scale mechanical response of the material. In the past few years, big efforts have been made worldwide; however, predicting the mechanical performance of materials in this context remains to be a problem without a solution that is fully accepted by the scientific community,” he says.

He explains that he intends to incorporate this new material model to the advanced analysis of large-scale structures, because the big challenge posed by this goal is to computer simulate the progressive collapse of structures during seismic events.

In this regard, modeling this problem is extremely difficult as it involves extreme deformation processes, the interaction of elements that fall during the collapse process and their consequent fragmentation.

The project also considers experimental testing to validate the numerical predictions obtained during the study. Running these tests will be possible with the acquisition of a vibrating table for the Department of Civil Works Engineering.

As a final result of this study, the researcher expects to have material advanced models able to capture extreme deformation processes that allow to calculate ductility measures.

“I believe that the major impact my project may have is in the area of design and construction of buildings and large-scale structures. In the case of wood, particularly, it is possible to promote the use of radiata pine to construct tall buildings if we have a more precise knowledge of its performance during failures or eventual structural collapse,” Dr Saavedra explains. 

The study will be conducted in the context of the Fondecyt Regular project 2016 (1160691), “Advanced Modelling of Ductility and Damage in Mass Timber Structures by Computational Homogenization.”

 

Translated by Marcela Contreras

Study on lizards’ movements in granular environments could contribute to robotics

Study on lizards’ movements in granular environments could contribute to robotics

  • With the funding of a Fondecyt Postdoctoral Project 2016, Dr Baptiste Darbois, professor at the Faculty of Science of Universidad de Santiago, will be able to accurately determine how lizards move in granular soils in order to produce results that allow to create a robot able to move easily in different types of soil.

 

With the funding of a Fondecyt Postdoctoral Project 2016, Dr Baptiste Darbois, professor at the Faculty of Science of Universidad de Santiago, will be able to accurately determine how lizards move in granular soils in order to produce results that allow to create a robot able to move easily in different types of soil. This would mean a significant contribution to robotics.

Based on previous research that found that once lizards dive in the sand, they move by wriggling their bodies and not by using their legs, Dr Darbois will study the interaction between a vibrating elastic structure and the granular environment.

The Fondecyt Postdoctoral project (3160167) is called “Locomoción ondulatoria de nadadores suaves dentro de los medios granulares.”

Experimental challenge

The experimental challenge of the study is to control the movement of grains and the forces they undergo when lizards move. This would help to establish guidelines for developing robots able to adapt themselves to different environments. The way of moving of different animals has inspired engineers in this field.

“We expect the compression produced by lizards’ undulating movements in the desert’s sub-surface to help us to develop efficient robots by incorporating this mechanism,” Dr Darbois explained.

Likewise, professor Darbois intends to develop, in the long term, a robot based on the best features lizards show when moving in a granular environment.

“Through this project, we expect to define the optimal conditions: the dimensions, elasticity, frequency and amplitude of vibrations to move forward in waves through a granular environment,” the researcher said.

The relationship between lizards and the development of robots is not odd; on the contrary, it can benefit technological development and improve people´s quality of life. For example, it can be used in critical situations.

“With regard to its applications, developing robots able to efficiently move in granular environments could help to detect anti-personnel mines in the deserts and find people trapped under avalanches,” Dr Darbois concluded.

Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación