Investigación

Undefined

Academic gives presentation to international experts on the progress of studies related to computer vision

Academic gives presentation to international experts on the progress of studies related to computer vision

  • Dr. Sergio Velastín, professor at the Department of Informatics Engineering of Universidad de Santiago de Chile, gave a talk on the use of data fusion in computer vision at the 17th Conference of the Institute of Electrical and Electronics Engineers (IEEE), held at Salamanca, Spain. Around 400 officials from the Ministries of Defense of different countries and members of the NATO attended the conference.

International experts on data management gathered last week in Salamanca, Spain, at the 17th version of the International Conference on Information Fusion (Fusion 2014) supported by the IEEE. Universidad the Santiago de Chile was represented by Dr. Sergio Velastín, full professor at the Department of Informatics Engineering, who gave a presentation during the activity.

He gave his presentation “The potential of fusion in computer vision application” to more than 400 people, many of them members of the North Atlantic Treaty Organization (NATO) and representatives of Ministries of Defense of different countries, who attended the conference to learn about the progress in this field.

Dr. Velastín talked about computer vision, the branch of artificial intelligence that is concerned with finding artificial means to interpret the visual information of the surrounding world. Human beings have specialized in this interpretation and use a significant part of their brains to do it. “Most of what we do every day (getting around, driving, interacting with others, enjoying sports, teaching our children, learning, reading information, among others) requires interpreting what we see. If machines were able to emulate these abilities, we could potentially enrich our lives and empower mentally or motor- handicapped people. We could also make our public spaces safer,” the academic said.

Data processing in the digital era

According to the researcher, more than 40 years ago, a revolution started in human development that would potentially transform what up to then were physical quantities (images, printed letters, vital signs like blood pressure, sounds, among others) into digital data (numbers) that could be processed by a computer. “This digital era in which we live has surrounded us to such a degree that we almost do not realize how extended the generation, transmission and processing of data are. A routine telephone call occurs thanks to the processing of these numbers. Everything can be more easily filed and humankind is generating more data than ever in its existence,” professor Velastín said.

The academic explained that although many technologies- like data fusion- initially arose due to military needs, especially during the Cold War, “the use of this data involves large potential benefits, but they undoubtedly depend on how societies and governments use it. Europe, with a more egalitarian and socially inclusive model, is achieving great progress benefiting people, for example, through the so-called intelligent cities and environmentally assisted life.”

Professor Velastín thinks that in societies with more individualistic models, like Chile or even the United States, benefits could turn into danger, mainly because these contributions are not well distributed and are not used for social inclusion. “How many municipal schools do usually use tablets or smart boards?” The risk posed by disparity in the access to technology increases inequality, particularly, in future generations,” he said.

Security cameras

At present, Dr. Velastín is conducting a study in London on people’s behavior on public transportation, by recording and interpreting digital images captured by security cameras. In his opinion, the use of cameras in public spaces is a complex issue that depends on the balance between the right to security and the right to privacy. “In an ideal society, nobody is arrested at random unless he/she is a suspect or has put other people’s security at risk. What is important is to have clear regulations that are transparently respected by everyone who is responsible for a security camera, both in the government and in the private sector.

Professor Velastín has worked for several years in the United Kingdom, the country with more cameras per capita in the world, but also with very strong regulations for protecting data. He went to Spain in the context of a visiting professorship at Universidad Carlos III de Madrid, through its Chairs of Excellence program, funded by Banco Santander.

 

Translated by Marcela Contreras

Earthquakes and volcanic eruptions could be predicted by using analysis and satellite imagery

Earthquakes and volcanic eruptions could be predicted by using analysis and satellite imagery

  • Dr. Alonso Arellano, academic at the Department of Metallurgical Engineering, conducts a Dicyt research which seeks patterns that allow the projection of a possible earthquake or volcanic eruption of great magnitude, through the analysis of high-resolution satellite images.


Predicting an earthquake is one of the highest aspirations of the researchers in this field worldwide. In a country like Chile, which is considered highly seismic, this search has become an essential need. In this context, a new process for early detection of earthquakes arises: the analysis of high resolution satellite images.

Dr. Alonso Arellano conducts a project funded by the Department of Scientific and Technological Research (Dicyt) in this field of research. He felt motivated in 2004 while he was doing a Ph.D. at the State University of Russia and subsequently investigated related phenomena, such as the case of the Popocatepetl volcano, located in the south of Mexico.
Through his project, called "Use of high-resolution satellite images for the study of strong earthquakes and related phenomena", additional information is sought to identify more patterns and better statistics.

Based on this information, associated phenomena could be addressed, through the analysis of high resolution satellite images for earthquake precursors. "To achieve this, images are analyzed before, during and after the earthquake. Then, each image is scanned in order to find typical structures, veins, fractures, faults, and thus confirm existing or new patterns,”  Arellano said.

According to this researcher, the study is based, on the assumption that the stress of the Earth’s crust can be seen in the form of lines. "The lines are visible when processing high resolution images captured by satellites, although they develop over 30 kilometers deep. For this reason, these images have become an important tool to detect areas of potential earthquakes,” he remarks.

Although in the last decade many similar investigations have been carried out by the international group led by Dr. Arellano in Chile, and by Dr. Dimitar Ouzounov in the United States, this study will differ in two aspects:  first, the use of the Chilean satellite FASAT Charlie, if the agreement with the Air Force, through the Aerophotogrametric Service, becomes effective. The second aspect is the use of software for the study of images, developed at the University of Santiago, Adelgeo.

Dr. Arellano’s collaborators are Ph.D. students in Engineering Science (Automatic and Process specializations) and the Master’s degree in Geomatics. As noted by professor Arellano, "they play an important role, because their motivation to do new things nourishes the investigation."

By Lorena Jimenez

Safer process for cyanide absorption and stripping in gold mining developed by research team at Universidad de Santiago

Safer process for cyanide absorption and stripping in gold mining developed by research team at Universidad de Santiago

  • Cyanide is one of the most commonly used chemicals in gold mining, mainly because it is easy to obtain and is highly effective in recovering this metal. However, due to its high levels of toxicity, its use should be controlled to avoid leaks. This is the reason why the process suggested in the study led by Dr Julio Romero, professor at the Department of Chemical Engineering of our University, is so important.


 

“These processes require very large equipment and a constant control, and may involve potential hazards, like leaks. This fact is particularly critical, because there may be gas streams containing cyanide as hydrogen cyanide flowing in the plant through large columns that could affect both people and the environment, if they are not handled with enough caution,” Dr. Julio Romero, researcher at the Department of Chemical Engineering, said.

For these reasons and according to the research lines of the Laboratory of Membrane Separation Processes (LabProSeM) of Universidad de Santiago de Chile, the research team conducted a study to minimize the risk posed by the changing conditions of cyanide by means of a membrane absorption process. The study was published by the Journal of Membrane Science with the name of “Design and cost estimation of a gas-filled membrane absorption (GFMA) process as alternative for cyanide recovery in gold mining.”

“We developed and adapted a new process that requires only one confined and compact piece of equipment. It allows cyanide to pass from one phase to the other without having to change its condition to gaseous state in a circulating stream, thanks to a membrane that absorbs and desorbs this substance in one stage,” he explained. 

The system works as a selective barrier, partly similar to biological membranes. These membranes are commercialized in the market and they are adapted for this specific use.

“This time, we evaluated a membrane with gas-filled pores, specifically, air-filled pores. In this way, the two solutions- the one from which the cyanide will be removed and the one in which the cyanide will be kept- contact each other passing through the membrane pores. This allows a controlled operation, reducing the risk of cyanide escapes into the atmosphere,” Dr Romero said.

The study was developed as of some systems that simulated the composition of the water in a gold deposit. This increases the feasibility of the design in real operations, because it suggests a reduction in the energy footprint of the process. Besides, it produces a 35% more of the net value provided by the AVR system and is comparable to the SART process.

The published article is the result of a more extensive study related to the dissertation work of Humberto Estay, graduated from the Engineering Sciences PhD program with a Major in Process Engineering, at Universidad de Santiago. Students and academics at Universidad Tecnológica Metropolitana have also contributed to this work.

Contributing to Green Chemistry

The LabProSeM has worked for more than 14 years on the study of membrane separation processes and their use in hydrometallurgical processes, food processing, biofuel separation and gas and waste management.  

Currently, the different studies supported by this laboratory have an ultimate goal: to incorporate the principles of eco-friendly chemistry. This idea was inspired by the green chemistry philosophy, based on 12 principles that intend to reduce the impact of future chemical processes.

“Membranes, as selective barriers, use a physical means to restrict the use of reagents and chemicals harmful to the environment. We would like to focus our research lines on the development of applications that respect the principles of green chemistry. We try to modify the design of our products, chemical treatments, processes and others, to make them eco-friendly. All this with the purpose of eliminating or considerably reducing the production of pollutants,” Dr Romero said.

Translated by Marcela Contreras

Researcher at Universidad de Santiago presented innovative technology at the Expo Milano 2015

Researcher at Universidad de Santiago presented innovative technology at the Expo Milano 2015

  • Dr Laura Almendares Calderón, professor at the Technological Faculty of Universidad de Santiago, presented her study “Development of a technology to replace prickly pear skin with a peel to keep the physiological, microbiological and organoleptic properties of the fresh fruit” at the Expo Milano 2015 (Italy). Dr Almendares presented the innovation in an activity devoted to the best sustainable development practices for food security.

 

Dr Laura Almendares Calderón, professor at the Technological Faculty of our University, carried out a technical visit to the Expo Milano 2015 (Italy) in order to get an insight of the food situation around the world. She was able to see a wide variety of raw materials, manufactured goods, equipment and supplies exhibited by more than one hundred countries. The activity had the presence of leaders from all over the world, like President Michelle Bachelet, who opened the Chilean Pavillion.

In this context, Dr Almendares, director of the FIA-USACH Project, PYT-2012-0033, “Development of a technology to replace prickly pear skin with a peel to keep the physiological, microbiological and organoleptic properties of the fresh fruit”, presented her work at the BSDP Week.

The activity started with an exhibition of photos, porters, brochures and other information material related to this matter. The academic was able to show the results of this Chilean innovative project to people from different countries, at the Urban Center, Galleria Vittorio Emanuele, in downtown Milano, between June 10th and 13th.

Chile participated in the competition “Feeding Knowledge”, a program created to contribute to the permanent legacy of the Expo Milano 2015.

With that purpose in mind, a document will be generated containing policies and key recommendations to create an effective knowledge system in the food security field in the Mediterranean Region. The final version of this document will be available in September this year.

Selection of proposals

The proposals submitted by eligible candidates underwent a strict admission control by the International Selection Committee, which is responsible for the final evaluation, using nine pre-established criteria.

The proposals that did not meet one or more of the admission criteria were not considered as “Good Practices in Food Safety.”

The ones that were well evaluated officially became “participating initiatives”, like the work presented by Dr Almendares. 

Her work was included in the priority theme “Food consumption habits: diet, environment, society, economy and health.”

 

This theme groups all projects which objectives are focused on research activities that evaluate the impact of current diets on the environment, economy, society, culture, health and nutritional sustainability.

This was the only Chilean study presented at the activity and it was registered as ‘9712. Development of methodology to replace prickly pear skin for enriched eatable peel. Chile. 25’.

Translated by Marcela Contreras

Researchers discover a tellurite-reducing enzyme

Researchers discover a tellurite-reducing enzyme

  • In the context of a research work on isolated microorganisms in the Chilean Antarctica, the research team led by Dr Claudio Vásquez, professor at the Faculty of Chemistry and Biology of Universidad de Santiago, discovered that glutathione reductase is one of the enzymes able to reduce tellurite, a compound which is highly toxic to almost all microorganisms.

 

Tellurium, a chemical element with symbol Te and atomic number 52, seems to be non-toxic. However, when combined with other elements like oxygen, it produces tellurite, which is very harmful to living organisms.

A research team led by Dr Claudio Vásquez studied the mechanisms that bacteria use against high concentrations of toxic metals. The results of the study were published in the American Society for Microbiology’sjournal Applied and Environmental Microbiology, USA.

This study is part of the Regular Fondecyt Project N° 1130362 “Tellurite-resistant Antarctic bacteria: Unveiling new toxicant resistance mechanisms,” which also inquired into how oxygen is partially reduced with the concomitant generation of reactive oxygen species (ROS) in the cells exposed to a toxicant. Organisms that depend on oxygen to breath live in an oxidative environment that affects their cells. Therefore, to prevent the cell’s structure and chemical composition from being damaged, they have an inner reductive environment,” he explains.

In the Antarctica

To collect the required samples, Dr Vásquez and Dr José Manuel Pérez of Universidad Andrés Bello, went to the Prat and Escudero Antarctic Bases; they visited Deception Island and Fildes Peninsula and travelled on the Almirante Óscar Viel ice-breaker of the Chilean Army.

 

“As the Antarctic laboratories are well equipped, we were able to process part of those samples. We wanted to isolate the Antarctic microorganisms resistant to the toxic salt tellurite that we had studied years ago at the university laboratory,” Dr Vásquez says. In the samples that they studied, they were able to isolate several tellurite-resistant bacteria.

Tellurite reduction

Dr Vásquez and his team were able to prove that glutathione reductase is responsible for reducing tellurite and, therefore, for the cell’s resistance to this toxicant.

“We purified proteins as of crude extracts of resistant bacteria and we found that a particular enzyme, glutathione reductase, was largely responsible for reducing the toxicant, as it changed it to its non-toxic metallic form,” he says.

“We tested these nanoparticles and we found that they have antibacterial properties, so they can be used to fight pathogenic bacteria that cause disease,” he adds.

It is worth to mention that the studies conducted by Dr Vásquez are eco-friendly, as he uses biosynthesis: He reduces metals by using proteins or cells and not chemical substances. In this way, it is possible to lower expenses and work at environment temperature, avoiding negative impacts on the ecosystem.

Dr Vásquez says that as tellurite is rare in the environment, it has been poorly studied and its properties are not well understood.

The research team is made up of the following members: Dr Benoit Pugin, Fabián Cornejo and Pablo Muñoz-Díaz (biochemists), Claudia Muñoz-Vilagrán, Joaquín Vargas-Pérez (biochemist) and Dr Felipe Arenas.

To read the full paper, search “Glutathione reductase-mediated synthesis of tellurium containing nanostructures exhibiting antibacterial properties” on the web.

 

Translated by Marcela Contreras

Project to delay ripening of export fruit yields optimal results

Project to delay ripening of export fruit yields optimal results

  • The study “Application of nanotechnology to develop a new ethylene adsorber oriented to the production of packaging for climacteric fruits,” successfully concluded. The new mechanism will allow delaying the ripening process of Chilean horticultural products exported to countries in Europe, North America and Asia.

 

 

Chile is a leading exporting country of horticultural products. As its most important buyer countries are in Europe, North America and Asia, shipping distances pose a challenge with regard to keeping the quality of these products.

In 2012, in order to contribute with a solution to this problem and because of Universidad de Santiago’s vocation to serve the country, the project “Application of nanotechnology to develop a new ethylene adsorber oriented to the production of packaging for climacteric fruits” was started, with the support of the Fund for the Promotion of Scientific and Technological Development (Fondef, in Spanish).

Dr Francisco Rodríguez, professor at the Department of Food Science and Technology, the Packaging Laboratory (Laben, in Spanish) and at the Center for the Development of Nanoscience and Nanotechnology (Cedenna, in Spanish) of Universidad de Santiago, has led the research team.

Ethylene gas control

After four years, the results confirmed the study’s hypothesis to use a packaging system that includes a mechanism to control ethylene gas and delay the ripening process. Ethylene gas controls plant growth and accelerates the maturation process.

“Our goal was to develop ethylene active films based on modified aluminum silicates and polyethylene in order to produce a material that can be used when shipping these products to distant markets,” the researcher said.

In the study, researchers used climacteric fruits like banana, plum and avocado. They had a positive response to the incorporation of an active plastic material based on zeolite, which structure was modified with some metals. “Modified zeolite showed an ethylene removal capacity five times higher than the capacity of non-modified zeolite,” Dr Rodríguez said.

Project closing seminar

The final results of the project led by Dr Rodríguez were presented at a seminar held in Hotel Plaza San Francisco. Representatives of some of the collaborating entities participated in the activity, like Maderas Bravo, Clariant and San Jorge Packaging

In this regard, Sergio Carrillo, Coordinator of the Department of Technology Management of Universidad de Santiago de Chile, said: “The focus now is on technology transfer, but for a long time, it was on research, and the market was out of the university scope. Fortunately, this has changed lately.”

For his part, Dr Rodríguez mentioned the possibility of continuing with this work so as to see the study results in the market, i.e, the use of the film in fruit exports. Up to now, the system works well, but it requires some adjustments to obtain a better product before going to market.

Translated by Marcela Contreras

Research will study flotation process to recover copper

Research will study flotation process to recover copper

  • The research, led by Dr. Miguel Maldonado, professor at the Metallurgical Engineering Department, intends to optimize this process through new on-line air measurement equipment.

During the last couple of years, we have heard about a decline in copper production, and according to experts this is one of the reasons why the quality of the mineral has been reduced. One way to revert this situation is improving mining procedures, which is a priority for mining industry.

One of these processes is flotation, a method used to separate valuable minerals like copper from others. The process starts once the rock is ground and mixed with water to form a pulp. Some reagents that modify the mineral surface are added to this mixture. In this way, when bubbles of air are forced up through the pulp, they collide with particles and the ones containing copper, for example, go up to the surface making a froth rich in valuable mineral, ready to be removed.

This is the method studied by Dr. Miguel Maldonado, professor at the Metallurgical Engineering Department. “Although today improvements have been made to flotation process- by means of devices that measure the air flow forced into a flotation equipment or the use of cameras that continuously monitor de physical properties of the froth- we still do not have a full knowledge of how air dispersion in the bubbles affects the metallurgical performance of the process,” the researcher said.

This encouraged the academic to do a research project called “Estimating on-line air concentration in flotation systems,” funded by the Scientific and Technological Research Department (Dicyt) of Universidad de Santiago.

“We believe that this variable is important when determining the process performance, as it is related to the surface area available to collect the particles containing valuable mineral and, therefore, to the complete recovery of copper,” the researcher explained.

The researcher said that the project was born while he was doing his postdoctoral research in Canada, at McGill University, considered a pioneer institution in proposing ways of measuring this variable. At that time, while he was studying this technique, he found out a problem with the interpretation of Maxwell’s equation, which would lead to a measurement error.

For this reason, the academic decided to insist on seeking new techniques in order to solve the problem; this time, with a better knowledge of the system.

At the first stage of the research, essential aspects of the error made will be studied. For this purpose, experiments to get a better understanding of the Maxwell’s equation will be performed. McGill University will also take part in this research by sending a flotation column to support the study and by developing papers together about this topic.

At the second stage, new techniques will be explored to find a method that estimates the air concentration in real time, in order to control and optimize the process.

In the academic’s opinion, “the efficient recovery of valuable minerals like copper is very important, and this measurement method could provide significant information for optimizing the process. This will have all kinds of benefits, such as reducing the reagents added or reducing the water used. This fact is also important if we consider that in most mining operations the water resource is scarce.”

 

Translated by Marcela Contreras

New contribution from Universidad de Santiago to the domestic industry: Researcher developed an eco-friendly antifungal packaging

New contribution from Universidad de Santiago to the domestic industry: Researcher developed an eco-friendly antifungal packaging

  • Dr Paula Zapata, professor at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, developed a fungicidal plastic film that degrades in a maximum of three years. This innovative product seeks to solve a common problem in food industry: the contamination by microorganisms produced between the production stage and the acquisition of the product by consumers.

     

    Dr Paula Zapata, professor at the Faculty of Chemistry and Biology of Universidad de Santiago developed a double function package that seeks to solve a common problem in food industry: the contamination by microorganisms produced between the production stage and the acquisition of the product consumers. The project has been funded by the Fundación para la Innovación Agraria (FIA) and the Metropolitan Regional Government.

    According to the project’s principal investigator, in comparison to other existing products, this new packaging is a contribution, “first, for its fungicidal properties, and second, as it is made up of an eco-friendly polymer, it is environmentally sustainable.” 

    To develop this film, the research team sought non-toxic natural agents and nanoparticles in order to keep food innocuousness and human safety.

    Transfer to the market

    Dr Zapata explains that this technological development can be used in different types of industry, then she thinks that the product’s transfer to the market is very achievable. For this reason, on December 06th, they presented the results of their work before several companies like Soprole, Multi Sport and Agrosuper, among others.

    “I expect the technological transfer process to be successful. The transfer involves different difficult stages, but with work and a good communication with the companies, and learning what they want and what they need, we will be able to achieve it,” she says.

    According to Juan Pablo Castro, Corporate Manager of the Flexible Packaging Division of Bo Packing, this project means a great contribution to the market, as they have been looking for a solution to the problems mentioned above for years.

    “I think the relation between the university and the companies is of great importance. I am a chemical engineer, so I feel involved in this research projects. Our doors are open to innovation, as it is the only way in which a country can develop 

    During the meeting, Osvaldo Quiroz, who is responsible for Networks and Outreach and Engagement at the Department of Technology Transfer of the Vice Presidency of Research, Development and Innovation, offered the company representatives the possibility of working in partnership with Universidad de Santiago.

    Undergraduate and graduate students at the Department of Chemical Engineering and the Faculty of Chemistry and Biology participated in the project, which also had the collaboration of Dr Franco Rabagliati, professor at the Department of Environmental Sciences.

     

    Translated by Marcela Contreras

Researcher at the Faculty of Chemistry and Biology studies toxic- resistant Antarctic bacteria

Researcher at the Faculty of Chemistry and Biology studies toxic- resistant Antarctic bacteria

  • Dr. Claudio Vasquez investigates the resistance of microorganisms in the Antarctic to tellurite, a derivative of metallic tellurium, which is very harmful and toxic to the environment.

Tellurium is a very scarce element in the earth's crust and its biological role is unknown to date. Although in its elemental state (Te ° metallic tellurium) it exhibits no toxicity, some of its derivatives, such as tellurite, are highly damaging to most bacteria.

In this context, Dr. Claudio Vasquez, professor at the Faculty of Chemistry and Biology at the U. of Santiago will be in charge of the Fondecyt project: "Antarctic tellurite-resistant bacteria: new mechanisms of resistance",  for three years.

The academic works with bacteria isolated in Antarctica, in order to analyze how the microorganisms react in a cold context in contact with the toxic. For the research, 800 toxic- resistant microorganisms, coming from 100 different Antarctic samples, were isolated. "Of all the samples, we chose four which showed greater resistance to unveil the defense mechanisms they use," the researcher says.

Dr. Vasquez adds that "over the years, we have identified proteins that help the cell to remove this toxic and, therefore, we think that these bacteria that have received more stress by being in extreme conditions at the Antarctic, could exhibit more sophisticated mechanisms. Our goal is to find new genes that encode novel proteins involved in the defense against these toxics.” the expert says.

As a projection of this study, the introduction of new genes into plants that grow in tellurium- contaminated environments, such as some mining areas, is expected. This would help the plants so that they can eliminate the polluting elements.

Pollution

The tellurite, produced as a result of industrial pollution, drains in groundwater by inhibiting or eliminating microorganisms that might be beneficial. It affects bacteria, fungi, plants and animals. For this reason, it is important to control the discharges which come from industrial exudates containing tellurium.

Tellurium is the molecular basis of solar cells that collect energy; therefore, any accident that might happen with these solar panels could release toxic elements.

Antarctic microorganisms will be used to produce lactose-free milk

Antarctic microorganisms will be used to produce lactose-free milk

  • Researchers at the Food Science and Technology Research Center of Universidad de Santiago de Chile (CECTA- USACH, its acronym in Spanish) will participate in a Fondef project that seeks to improve enzymes’ ability to produce lactose-free milk in cold conditions, increasing the efficacy of the dairy products industry. In partnership with members of the Chilean Antarctic Institute (INACH, its acronym in Spanish), they will search for enzymes in different microorganisms from the Antarctica that would allow working at low temperatures. In Chile, 60% of the population suffers from lactose intolerance.


 

Lactose intolerance is a condition that affects millions of people all over the world. It is estimated that 30 to 50 million people in the United States suffer, to some degree, from this condition. An estimated 90% of the Asian population has the same problem, just like 60% of the Chilean population.

Lactose is a type of sugar found in milk and other dairy products. The body needs an enzyme called lactase to break down lactose. Lactose intolerance occurs when the small intestine cannot produce enough lactase. This is the reason why lactose content in milk has to be reduced, so that people suffering from this condition are able to drink it.

The project expects to detect an enzyme that allows breaking down lactose at low temperatures and at a better level of efficiency than the one of the enzyme currently used in the industry. Researchers will search for this enzyme in different microorganisms (fungi, yeasts and bacteria) that have been already isolated and brought from the Antarctic continent.

Once the efficacy at low temperatures of this “Antarctic enzyme” is described and tested, the project will be able to move forward to obtain the resources required for creating the conditions to transfer this biotechnological product to the industry.

In this way, finding enzymes which are highly effective in reducing the lactose content of milk at low temperatures will not only allow to optimize some of the current production processes, but it will also open new possibilities for the design of lactose-content reducing processes in cold conditions and for the production of lactose-free foods.

The project called “Antarctic enzyme with highly effective β-galactosidase activity to reduce lactose content of milk at low temperatures” (ID14I10098) will last for two years and will be funded by Fondef and Universidad de Santiago. It will be led by Dr Renato Chávez Rosales (Director), professor at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, and Dr José Luis Palacios Pino (Alternate Director), researcher at Cecta-Usach.

The experts will work in partnership with members of the Chilean Antarctic Institute in the search for the enzyme in different microorganisms brought from the Antarctica.

Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación