Investigación

Undefined

IV International Congress of Science, Technologies and Cultures: Call for symposium presentation proposals

IV International Congress of Science, Technologies and Cultures: Call for symposium presentation proposals

  • As in previous occasions, in this fourth version, Universidad de Santiago proposes to hold a great academic gathering to share works and foster an interdisciplinary dialogue.

The next International Congress of Science, Technologies and Cultures will be held at Universidad de Santiago between October 9th and 12th, 2015. Our University has decided to continue with this important initiative, focusing on three objectives: contributing to dialogue and exchange between different disciplines; encouraging the debate on intellectual work looking towards the future of Latin America and the world; and generating a big coordination movement involving people and institutions that produce and spread knowledge to develop intellectual productive clusters.

The congress will be held as a product of preexisting intellectual networks, with the purpose of strengthening and widening them, ensuring the projection of a civil intellectual society that shall rise as a voice in contemporary debates.

The organizing committee invites you to present symposium proposals for this important activity. The deadline for the reception of proposals is June 30, 2014, and they shall be sent to grancongreso2015@gmail.com.

For further information regarding registrations, proposals and activities, check http://www.internacionaldelconocimiento.org/documentos/2015/convocatoria-IV-congreso-ingles.pdf

More efficient packaging to preserve fruits for export

More efficient packaging to preserve fruits for export

  • Ethylene is a hormone able to accelerate the ripening and maturation of fruits. Through a Fondef project, Dr. Francisco Rodríguez, a researcher at the Center for the Development of Nanoscience and Nanotechnology (Cedenna, in Spanish) of Universidad de Santiago, seeks to reduce the effects caused by this gas in two particular types of fruit, avocados and kiwis, and to develop more efficient packaging for the export process.

 


The Packaging Laboratory (Laben, in Spanish) of Universidad de Santiago organized a seminar that was held on November 28th, at Plaza San Francisco Hotel, with the purpose of informing on the current state of a study that seeks to develop an ethylene adsorber for producing packaging for climacteric fruit, like kiwis or avocados.

The activity was attended by representatives of different companies and by Valeska González, project executive of the Fund for the Promotion of Scientific and Technological Development, (Fondef, in Spanish); Dr. María José Galotto, director of the Laben; and Dr. Óscar Bustos, Vice President of Research, Development and Innovation of Universidad de Santiago.

During his presentation, Dr. Francisco Rodríguez Mercado, director of the project, said that the level of ripeness that fruits reach while they are being transported to different countries “requires finding new strategies to allow us to control some processes that affect the quality of our products.”

Dr. Rodríguez explained that, in order to reduce the effects of ethylene, they are working on a new adsorber based on local minerals, zeolites and clay, specifically. The first results showed that if zeolites are modified by some metals, they have a better response at ethylene removal, overtaking clay by 5% in effectiveness.

At a next stage, the study will focus on developing a suitable film that will be tested in the plant and then, in the selected fruits.

International point of view

Dr. Ramón Catalá, representative of the Institute of Agricultural Chemistry and Food Technology of the High Council for Scientific Research (IATA-CSIC), in Spain, also took part in the seminar and spoke about innovation and main trends in food packaging.

According to Dr. Catalá, Universidad de Santiago is on the right track “because they (researchers at the University) are working on completely relevant issues. Besides, the researchers are excellent and they have a clear policy with regards to incorporating qualified people to strengthen research activities on active packaging,” he said.

Translated by Marcela Contreras

Researchers develop biofungicide to manage fungus that affects grapes

Researchers develop biofungicide to manage fungus that affects grapes

  •  A natural technological solution to manage Bortrytis cinerea- a phytopathogenic fungus that affects grapes and causes significant economic losses- was developed by researchers at Universidad de Santiago. The study conducted by a team that involved researchers at the Faculty of Chemistry and Biology and the Faculty of Engineering will provide a healthier and more eco-friendly solution to this problem. Dr Milena Cotoras explains: “It is a natural product that adds value to residues, something that is very important for the industry,” adding that Chile produces about 100 thousand tones of these residues.

 

A natural and biodegradable fungicide was the result obtained in the project led by Dr Milena Cotoras. The project was funded by the National Commission for Scientific and Technological Research (Conicyt, in Spanish) through the Fund for the Promotion of Scientific and Technological Development (Fondef, in Spanish) and its IDeA Program.

With this support, the project “Development of a fungicide derived from wine industry residues against pthytopathogenic fungus Botrytis cinerea (code CA12i10054) was conducted in order to find an innovative solution to a problem that commonly affects wine industry: the presence of the Botrytis cinerea fungus (grey mould).

This fungus affects more than 250 vegetal species; however, it is usually related to wine making industry for its negative impact on local vineyards that leads to significant economic losses.

An interesting aspect of this study is the fact that the team used grape pomace extracts to produce this solution which, until recently, was considered as waste. These residues were obtained thanks to the collaboration of Viña Miguel Torres winery during the study.

Dr Cotoras explains: “It is a natural product that adds value to residues, something that is very important for the industry,” adding that Chile produces about 100 thousand tones of these residues.

The results of this study also included the development of six undergraduate thesis, two publications, seven presentations in national and international conferences and one patent application.

The project closure ceremony was held on May 05th in the Auditorium of the Faculty of Chemistry and Biology and was headed by the Dean of the Faculty, Dr Gustavo Zúñiga. Francisco Vargas, executive of Fondef; Edgardo Santibáñez, manager of the Department of Technology Management of Universidad de Santiago, and Dr Isidro González Collado, professor at Universidad de Cádiz (Spain), attended the ceremony. Some of the researchers, Dr Leonora Mendoza and Dr Rubén Bustos, were also present at the activity.

Eco-friendly solutions

During the activity, Dr Isidro González Collado gave the presentation ‘Síntesis, inspirada en la genómica, de moléculas hibridas como antifúngicos contra el hongo fitopatógeno Botrytis cinerea’ to inform about part of the work that he has been doing for 35 years with his research team. 

“The big current problem with most of fungicides is that they remain on the soil for a long time, causing environmental problems and toxicity to animals, birds and even to human beings, because they enter the food chain,” Dr González, an expert in organic chemistry, says.

According to the Spanish expert, the challenge taken on by Dr Milena Cotoras and Dr Leonora Mendoza is on the right track, because it is part of the current challenges in the field, where all the efforts are being made to find effective solutions, which are less damaging to people and the environment.

Dr González says that in the case of Chile, the fungus that causes “grey rot” (Botrytis cinerea) has a strong relation with oenology. “During the past years, the use of natural fungicides has been improved in Chile and I am aware that recent work has been oriented to a natural control of Botrytis to avoid toxic residues in wine,” he says.

Bringing industry and universities closer together

Francisco Vargas, executive of Fondef, who also participated in the activity, says: “We have tried to bring industry and universities closer together, as it is the only way we have to reach products, development and innovation.”

Besides, Mr Vargas announced that in August, the fourth call for the Fondef Technological Research contest will be opened. “In this way, the efforts made in research and in activities to get economic and social impacts that give sense to research, will be extended. In other words, it is necessary to generate industrial and government actions to give our society and our markets universal access to research results. And this will only be possible if there is a permanent cooperation and mutual benefit between universities and companies.”

Translated by Marcela Contreras

Fondef awarded Universidad de Santiago about US$800,000 to develop applied research projects

Fondef awarded Universidad de Santiago about US$800,000 to develop applied research projects

  •  In the context of the second IDeA en Dos Etapas Contest of the Fondef Program of Conicyt, four projects of Universidad de Santiago with potential economical and social impact were awarded about US$800,000. 664 projects applied for the funding nationwide, but only 50 were selected.
  • For Dr Luis Magne, Head of the Technology Transfer Department of Universidad de Santiago, “The projects that were awarded funds represent the efforts made by our university to develop applied research projects that respond to the main problems of the country.”
  • Particularly, the funds will support the following projects: “Proyecto sensores Hall ultrasensibles para detecciones varias de la industria minera” (by Dr Dora Altbir); “Bases científicas-tecnológicas para generar una propuesta de regulación de envases plásticos reciclados post-consumo para su uso en contacto directo con alimentos” (by Dr María José Galotto); “Plataforma de apoyo a la gestión de emergencia y aplicaciones” (by Dr Mauricio Marín) y la “Investigación para la optimización de la producción de pellets hidrofóbicos de alta densidad energética a través de la carbonización hidrotérmica de diferentes mezclas de biomasa de relevancia nacional” (by Dr Luis Díaz).

 

Universidad de Santiago was awarded 551,662,728 Chilean pesos (about US$800,000) for the execution of four projects in the context of the second IDeA en Dos Etapas Contest of the Fondef (Fund for the Promotion of Scientific and Technological Development) Program of the National Commission for Scientific and Technological Research (Conicyt, in Spanish). These funds will contribute to scientific and technological research with potential economic and social impact.  

Khaled Awad, Director of the Fondef Program, highlights that in this second version, the IDeA en Dos Etapas Contest consolidates itself as a strong tool to support projects in different regions of the country.

“Fondef works to promote technological development based on scientific knowledge in all areas. This contest shows us this diversity and contributes to science and technology research work conducted all over the country,” he says.

For his part, Dr Luis Magne, Head of the Technology Transfer Department of Universidad de Santiago, says: “These results show, in the first place, the high competitiveness of local science.” “The projects that were awarded funds represent the efforts made by our university to develop applied research projects that respond to the main problems of the country,” he adds.

The funds awarded to the university will support four projects.

One of them is led by Dr Dora Altbir, who will develop ultra-sensitive HALL sensors for different detection works in mining industry.

Another project is led by Dr Mauricio Marín, who will develop a support platform for emergency managing and apps.

For her part, Dr María José Galotto leads a research group who will work on the scientific-technological bases to generate a proposal for regulating the use of post-consumer recycled plastic containers for direct food contact applications. 

Dr Luis Díaz will lead a study for optimizing the high-energy-density hydrophobic pellet production through hydrothermal carbonization of different biomass blends of national importance.

In this contest’s second call, 644 projects applied for the funds, almost 200 more than in the first version, but only 50 were selected nationwide. The projects are distributed in the following areas: Food (8), Fishing and Aquaculture (8), Energy (7), Manufacturing (6), Health (6), Social Sciences and Education (5), Mining Industry (3), Infrastructure (3), ICT (2) and Environment (1).

The selected projects will go into the Applied Science Phase, where I+D (Innovation and Development) projects are funded to validate proofs of concept, models or prototypes at small scale or under lab conditions.

Translated by Marcela Contreras

New compound to prolong shelf life of dairy products

New compound to prolong shelf life of dairy products

  • The project led by Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty, seeks to renew food industry by developing a compound with antimicrobial and antioxidant properties to prolong shelf life of dairy products. The project is funded through a Fondecyt Regular project 2016.

 

 

Nowadays, fresh, healthy and natural food consumption has increased, particularly, the intake of dairy products. According to the Chilean Bureau for Agricultural Studies and Policies (ODEPA; in Spanish), in 2013 the intake per capita was 146.5 liter, a national record in the country. 

However, these products require additives for their preservation that are not always natural and that do not allow a balanced and healthy diet.

In this context, Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty; Dr Rubén Bustos, professor at the Department of Chemical Engineering of the Faculty of Engineering, and students at both units formed an interdisciplinary research team that will work on the study “Prolonged release of natural active compounds for improving shelf life of a dairy food matrix: Effect of structure obtained by different encapsulation process”. The project is funded by a Fondecyt Regular project (1160463) and it seeks to find a new active compound to preserve dairy products by means of nanotechnology. 

“We want to develop a new active ingredient with antimicrobial and antioxidant properties for dairy foods, in such a way that the compound has a prolonged release during storage, extending the product’s shelf life,” Dr Matiacevich says.

With this in mind, the researchers intend to study how the structure generated in this active ingredient- a powder developed through two different techniques- modifies its prolonged release in time in a real matrix,” she adds.

Food innovation and collaborative work

The objective of the study is to evaluate the effect of the structure obtained through “different encapsulation processes in prolonged release during storage of an encapsulated active agent,” in order to prolong the shelf life of a milk-based food matrix.

“By using encapsulation processes it is possible to obtain nanometric-sized particles, so the principles of nanotechnology are involved in this development,” favoring the compound prolonged release,” Dr Rubén Bustos, co-researcher of this study, says.

Food innovation research has increased worldwide. In Latin America, there are several research groups. For example, there are centers in Argentina, Colombia and Brazil, which professionals will collaborate in this project.

According to Dr Matiacevich, the main contribution of this study lies in that they will work directly with foods, so the study will not only provide basic knowledge but it will be applied to a real matrix.

For his part, Dr Bustos stresses the importance of their work with nanotechnology by saying: “At some point, microencapsulated ingredients were the greatest breakthrough, but now we will work with nanoencapsulated compounds, with much smaller and innovative structures.”

For the research team, the most important fact in relation to this project is that it involves the collaborative work of two departments of two different faculties of Universidad de Santiago de Chile. They also value the support of the Vice Presidency of Research, Development and Innovation, and the collaborative work with national and foreign universities. 

 

Translated by Marcela Contreras

Maqui berry to combat side effects of psychotropic drugs

Maqui berry to combat side effects of psychotropic drugs

  •  According to Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology, the use of Aristotelia Chilensis allows to reverse the problems caused by the use of psychotropic drugs, like obesity, diabetes and cardiovascular diseases.

 

 

Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, found that people using antipsychotic drugs for 6 continuous months exponentially developed obesity, insulin resistance, dyslipidemia and cardiovascular diseases.

According to the Chilean National Institute of Public Health, clozapine and olanzapine have been the most commonly imported psychotropic drugs in Chile in the past ten years for their low cost and effectiveness for the treatment of psychosis or schizophrenia in adult patients and the treatment of attention deficit disorder, autism, Asperger syndrome and bipolar disorders in children.

However, the side effects that they produce alerted Dr Rojo, as he found that antidiabetic drugs did not help patients to overcome their problem. He started looking for solutions, and after testing a Chilean product in laboratory, in 2012 he found an answer: Maqui berry (Aristotelia Chilensis), a small tree that grows in the center and the south of Chile.

“Descubrimos en Estados Unidos, que uno de sus compuestos es fuertemente antidiabético, así que pensamos que el maqui puede prevenir la obesidad que es causada por antisicóticos y descubrimos que previene la acumulación de lípidos en las células en pacientes tratados con estos fármacos”, explica el experto en toxicología.

“In the USA, we found that one of the maqui components is a strong antidiabetic compound, so we thought that maqui could prevent the obesity caused by antipsychotic drugs. We found that it reduces lipid accumulation in the cells of patients who are treated with these drugs,” Dr Rojo explains.

Research team

Dr Rojo has an extensive scientific experience. His work has been recognized by the New York Society of Cosmetic Chemists and the American Society of Pharmacognosy, after he discovered an anti-aging technology based on Pouteria Lucuma bioactive compounds.

The project has the collaboration of Dr Ilya Raskin, of Rutgers University, New Jersey (USA); a research team of Universidad de Chile, led by Dr Pablo Gaspar; and the Hadassah Academic College of Jerusalem.

The study is called “Evaluation of Anthocyanins from Maqui Berry in the Prevention of Clozapine-Induced Hepatic Lipid Accumulation, Activation of SREBP1c Target Genes and Obesity” and it is funded by a Fondecyt Initiation Project in the field of psychotropic drugs and metabolism.

Current situation and expectations

Currently, Dr Rojo and his collaborators continue working in the laboratory at the Faculty of Chemistry and Biology of Universidad de Santiago. At this stage, they are trying to elucidate how the natural maqui components (called anthocyanins) prevent lipid accumulation and the metabolic problem associated to the use of antipsychotics.

 

The researcher expects to conclude his work by the end of 2017 with a continuity project that allows using the product in patients. Dr Rojo says that this project will benefit the country, because he thinks that the product would not be expensive; and it would also be good for national economy, because people who collect and sell maqui are eager to find new uses for it.

Today, the product is considered as a super fruit and it is mainly commercialized in the United States. Besides, there are already companies interested in the project and in getting involved in it.

 

Translated by Marcela Contreras

Professor Max Chacón received English Prize for the 2011 best scientific publication

Professor Max Chacón received English Prize for the 2011 best scientific publication

  • His paper deals with details about how a person's exposure to carbon dioxide affects cerebral blood flow. The information was provided by experimental British patients, as part of a collaborative work with the University of Leicester.

Dr. Max Chacón, professor at the Department of Informatics Engineering, Faculty of Engineering, was awarded the 2011 Jack Perkins Prize by the Institute of Physics and Engineering in Medicine (IPEM) of England, for his publication "Non-linear multivariate modelling Hemodynamics of cerebral hemodynamics with Autoregressive Support Vector Machines.”

 The award, which consists of  £ 250, is given annually to the best paper published during the year in the Medical Engineering & Physics journal, after a review carried out by a specialized committee that evaluates aspects such as the novelty and impact of the research.

 Dr. Chacon thanked the award and noted that this type of survey research confirms the good work being done in this University. "This is an important recognition for us, especially because our paper in the area of cerebral self regulation did not belong to the field of biomechanics, the journal’s strongest line of research, which could have been  the most possible winner”, he said.

The winner added that "all the profits for this recognition are indirect: for example, increasing the bonds of cooperation not only with the university we work with (Leicester), but also with other foreign institutions".

Significant contribution to medicine

The awarded paper is part of a specific area called cerebral hemodynamics. Professor Chacón  is working with two other researchers: Claudio Araya, former student of Master’s degree at the U. of Santiago, and Ronney Panerai from the University of Leicester (England).

 The cerebral hemodynamics acquires vital importance, because the estimates of international organizations involved in the field of health in Chile indicate that by 2025 more people will die from brain strokes than heart attacks. It is believed that the blood flow would be strongly linked to vascular accidents and also with a number of diseases, such as Alzheimer's, arteriosclerosis (carotid artery, mainly), head trauma, vascular dementia and diabetes, among others.

"Cerebral strokes are rising very strongly in the country and the causes are unknown. One thing that causes brain damage is the stronger flow in the arteries. It is known that the brain has a flow control system, and this means that, although the pressure varies in the body, the flow is almost constant in the brain. If there is little flow, one loses consciousness and, conversely, if there is a lot of flow an artery breakdown happens, “Chacón explained.

This mechanism, which constantly generates blood flow into the brain, is what researchers try to model through a data–based nonlinear system. This publication addresses one of the topics related to cerebral hemodynamics, because of the data given by the English researcher who provided the information based on 16 healthy patients who breathe in air with a small fraction (5%) of carbon dioxide (CO2) through a mask. The aim was to know how breathing in this gas affects the regulation of the blood flow in the brain.

"We proved that it is possible to represent changes in the inhalation of CO2 in a person by using this nonlinear model and this has metabolic implications, for instance. We know that breathing in a fraction of CO2 produces changes, which are equivalent to those experienced by people with diabetes, i.e. a metabolic problem, and these problems affect the blood flow in the same way as CO2 does it, “the researcher said.

Prize

The IPEM is an institution dedicated to joining professionals from the physical sciences, clinical engineering, the academic world, the health services and the industry, in order to share knowledge and advances in science and technology. Since 2000, it gives the Jack Perkins Prize in honor of his first journal’s editor, who died in 2000.

 

Inorganic molecules could help in anticancer treatments

Inorganic molecules could help in anticancer treatments

  • Through a Fondecyt Initiation into Research Project, Dr. Luis Lemus, professor at the Faculty of Chemistry and Biology, has studied the interaction between new molecules called “helicates” and DNA, in order to evaluate the development of more specific drugs to fight cancer, avoiding the destructive effects of chemotherapy and radiotherapy.

According to Globocan, a worldwide survey on cancer conducted in 2012; there are 14.1 million new cases of this disease. At present, the most widely used treatments are chemotherapy and radiotherapy. Their purpose is to stop cancer spreading in the body by killing malignant cells that divide rapidly, one of the main properties of most cancer cells; however, in the process healthy cells are killed too: hair follicles, gastric mucosal cells, blood cells, etc. These side effects make these non-specific treatments very destructive:

Something that could help to change this situation is the development of new compounds with a higher selectivity towards a specific biological target, the line of research of Dr. Luis Lemus, professor at the Faculty of Chemistry and Biology of Universidad de Santiago, who leads the Fondecyt* Initiation into Research Project named “Study on Helicates as DNA coordinators”. Its results could lead to developing more specific anticancer drugs.

“These molecules (helicates) are able to bind to DNA strands by means of specific and strong interactions, modifying its structure, what prevents the genetic material from replicating inside the cell. What should be noticed is that cancer cells are the ones that produce the largest amount of DNA; therefore, these molecules could be a potential treatment against cancer progression,” professor Lemus stresses.

To make progress in the treatment of this disease, first it is essential to deepen the knowledge about these compounds, which started to be studied less than 30 years ago. According to professor Lemus, nowadays there are a few groups in the world dedicated to study the use of helicates as anticancer drugs and the way in which this type of interaction affects the DNA structural modification has not been studied yet. This is the line of research that Dr. Lemus intends to develop.

“Helicates are inorganic chiral molecules with a helical shape similar to the one of DNA, in which each molecule has a helical twist sense defined according to its structure. These positive molecules interact with negatives ones, in this case, DNA. After this electrostatic attraction occurs, the DNA is able to recognize and selectively establish secondary interactions with helicates with better twist sense than others. Here, documenting this phenomenon is essential.

This project will be implemented in two stages. First, by performing the structural study and synthesis of different types of helicates with different transition metals; and second, by doing DNA tests to evaluate the affinity between the molecules and DNA, and the extent to which helicates could modify the latter.

Regarding the projections of the study, professor Lemus says that in the future, “it would be ideal to evaluate these compounds against cancer cells and therefore, to prove if they are able to kill these cells. However, today we are trying to build a very basic knowledge, because it does not exist. Acquiring this knowledge will be very helpful for us and for other groups.”

A field to explore

Creating a research group dedicated to study inorganic complexes for biological applications is among the goals that Dr. Lemus has for this project. According to the academic, this area is little developed in Chile, so this study could start a new line of research both at the University and in the country.

“We have the facilities, equipment and experience in synthesis to meet the initial goals of this project; but we also need help from other researchers who could contribute with their knowledge in biology to make the study more valuable. This project is the first step for the expectations that we have as a group,” Dr. Lemus says.

*Fondecyt: National Fund for Scientific and Technological Development.

Translated by Marcela Contreras

Researchers at Universidad de Santiago were part of the INACH scientific expedition to the Antarctica

Researchers at Universidad de Santiago were part of the INACH scientific expedition to the Antarctica

  • Academics at the Department of Physics, led by Dr. Raúl Cordero, were part of the scientific expedition made in November by the Chilean Antarctic Institute to Unión Glacier and they contributed with valuable measurements of the optical properties of snow.
     

Although researchers who belong to Dr. Cordero’s group were pioneers in the Unión Glacier area when they carried out several measurements in December 2012, the scientist points out that “the Joint Polar Research Station located at 79 degrees South latitude is a milestone in the Chilean polar research work that will facilitate research at the area and will allow to enhance the national scientific activity in deep Antarctica,” he said.

The Joint Polar Research Station, located at the Unión Glacier in the southern area of Ellsworth Mountains, at about 3,000 kilometers to the south of Punta Arenas and only at 1,000 km from the South Pole, received an important scientific expedition organized by the Chilean Antarctic Institute last November.

Dr. Raúl Cordero led the research team of the Department of Physics of Universidad de Santiago that was part of this expedition and that carried out valuable radiometric measurements in order to describe the optical properties of snow, particularly, its reflectance. The amount of energy reflected by the Antarctic surface is very important, because its variation has an impact on the balance of energy of the continent and, therefore, on the climate of the entire planet.

Dr. Cordero emphasizes that any variation in the current weather conditions in the Antarctica (for example, alterations caused by temperature changes) could spark off mechanisms able to accelerate the climate change; therefore, “eventual reductions in the radiation reflected by the Antarctica into space could contribute to global warming.” “This campaign will provide significant evidence for a better understanding of the Antarctic climatology and its role as a global climate agent,” he added.

The researcher also highlights other aspects of the scientific activity developed at the Unión Glacier. “In spite of the fact that Chile has been conducting research in the Antarctica for decades and has permanent bases on the Antarctic Peninsula, the scientific efforts in the Antarctic Circle (i.e., beyond 66 degrees South latitude) have been rather limited.”

Although researchers who belong to Dr. Cordero’s group were pioneers in the Unión Glacier area when they carried out several measurements in December 2012, the scientist points out that “the Joint Polar Research Station located at 79 degrees South latitude is a milestone in the Chilean polar research work that will facilitate research at the area and will allow to enhance the national scientific activity in deep Antarctica,” he concluded.

Translated by Marcela Contreras

Cross-laminated timber: the best option for buildings

Cross-laminated timber: the best option for buildings

  • Cross-laminated timber offers some extraordinary advantages for buildings: thermal insulation, seismic properties, good performance under fire and ecological sustainability are some of its properties. This was shown by the study led by Paulina González, professor at the Department of Civil Works Engineering. On May 18th, the book with the results of the study was launched.

     

    An innovating system for constructing buildings with more than two floors using cross-laminated timber (CLT) was proposed by an outstanding study led by Paulina González, professor at the Department of Civil Works Engineering.

    Cross-laminated timber is a three-layered panel made of lumber. The layers are laid in parallel formation and are “bonded together with special glues, at 90º to the layer below,” Paulina González says. “This gives the panel a high resistance, because wood has different mechanical and physical properties in the three directions,” she adds.

    This technology proposed by professor González has already been implemented in other countries; the difference is that, in Chile, it would be based on radiata pine, which forestry is highly developed in Chile.

    Professor González says that Chile is among the countries with the largest planted areas of radiata pine. “In addition to developing this project, we can give value added to our timber, try to solve the housing shortage of our country, and establish a system that would allow constructing buildings which structural elements, walls and slabs are made of this new product,” she adds.

    Better properties

    According to her research, constructing a cross-laminated timber-based building has many advantages over constructing with other materials, like reinforced concrete; For example, as it is a prefabricated product, it allows reduced construction times and a cleaner environment.

    “You bring the walls and slabs and assemble the building like a meccano set. It reduces construction times to a third, if compared to the construction of a reinforced concrete building,” she explains.

    Besides, cross-laminated timber has seismic properties. As reinforced concrete weighs as much as six times as cross-laminated timber, it generates higher seismic forces than the ones of a CLT-based building. “As it (a CLT based building) is assembled like a meccano set, with steel connectors, it gets so flexible that prevents its destruction,” professor González adds.

    Additionally, when constructing a building with CLT, less time is required, what can eventually lead to a solution for reconstruction works after natural disasters.

    “Construction times are reduced to a third. And so are the costs. The costs of structural work get reduced by 35%, and the total cost, after installations, to 10%,” she says with regards the economic benefits of CLT.

    Radiata pine, the base of the product studied by professor González, is ecologically sustainable. On the one hand, because its carbon footprint- the total amount of greenhouse gases that it emits- is very low; and on the other, because this tree grows very fast and it has extensively been planted in the country.

    “It is sustainable because carbon remains in the timber, and the carbon footprint is almost zero. Also, radiata pine grows very fast. This is why there are so many plantations in Chile.”

    A safe material

    “Depending on its density, when timber burns, it produces a charcoal layer in the outside that works as insulation to prevent fire and heat from entering its inner part,” professor González said, debunking the myth that this material is fragile.

    “It will last longer, even longer than a steel building. The steel building’s ability to resist fire is reduced to a half when it is exposed to 400º C. Timber remains stable for its charcoal layer,” she adds.

    Besides, timber has better acoustic insulation properties than reinforced concrete.

    CORFO Project

    The CORFO Project 12BPC2-13553 “Estudios de Ingeniería para Introducir en Chile un Sistema Constructivo de Rápida Ejecución para Edificios de Mediana Altura, Utilizando Elementos de Madera Contralaminada” lasted for two years; however, researchers at the Faculty of Engineering had conducted former studies on this subject matter. For this reason, after all this process, “we concluded that, considering the use of timber, CLT is the best system for a seismic country,” professor González says.

    “We have been the first ones in developing a project like this in Chile, with this system for medium-rise buildings,” she says.

    Professor González is optimistic about the future that TLC may have in our country due the experiences in other countries of the world. “In Vancouver (Canada), they are designing an eighteen-floored building and organizing a contest to build a 30-floored one,” she explains.

    Based on this study, the book ‘Sistema Constructivo en Madera Contralaminada para Edificios’ was produced. It includes former studies on this subject matter and an outstanding model of a four-floored CLT-based.

    The book was launched on May 18th, at 12:00 h, in a ceremony at the Salón de Honor of Universidad de Santiago, with the presence of President Juan Manuel Zolezzi Cid.

    Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación